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CONSTRUCTING A MINIMAL COST SPANNING TRE

SUBJECT TO RESOURCR CONSTRAINTS AND FLOW REQUIEMNTS

by

Andrew W. Shogan
University of California, Berkeley

1. INTRODUCTION

Given a connected, undirected, H-node network with a weight assigned

to every arc, solving the minimal spanning tree (MST) problem requires the

construction of a connected subnetwork that includes every node of the net-

work and whose arcs have a minimal total weight. It is well-known that

such a subnetwork will always be an (N-1)-arc tree, that is, a connected

network with no cycles.

The construction of an MST is the goal in a wide variety of applica-

tions. For example, given a set of nodes that must communicate with each

other and given the cost of constructing a comnication link between each

pair of nodes, the MST is the solution to the problem of constructing at

minimal cost a network in which every pair of nodes can communicate along

some path. A number of other seemingly unrelated problems and applications

can be reduced to minimal spanning tree problems; both Bradley [1) and

Kershenbaum and Van Slyke [19] provide excellent surveys.

There are two classic MST algorithms, one due to Kruskal [201 and

another discovered independently by Prim [211 and Dljkstra[61. Both algo-

rithms consist of N-1 iterations, with each iteration identifying a new

arc of an optimal spanning tree. An iteration of the Kruskal algorithm

consists of adding an arc to a forest of subtreea; the added arc Is the arc

of least weight that when added to the forest of subtrees does not form a

cycle. An iteration of the Prim-Dijkstra algorithm consists of adding an
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arc to a single subtree; the added arc is the arc of least weight incident

to a node in the subtree and a node not in the subtree. Both algorithms

are efficient and easy to implement on a computer; Kershenbaum and Van

Slyke [19], Yao [24], and Cheriton and TarJan [4] discuss very efficient

computer implementations that rely on sophisticated sorting and storage

techniques.

In many practical situations, resource constraints and flow require-

ments preclude the construction of the unconstrained MST obtained by apply-

ing either the Kruskal or Prim-Dijkstra algorithm; this paper considers

such a situation. More specifically, consider a set of N nodes having

indices 1, 2, ..., N; node 1 is a source having an infinite supply of a

commodity, and every other node p is a sink having a known constant de-

mand dp. Denote the undirected arc between two nodes having indices

p < q by (p,q); note that there are n E (1/2)(N)(N-1) arcs. For nota-

tional convenience, assign to each arc a distinct index j equal to its

position in a lexicographic ordering of the n arcs based on the represen-

tation of an arc as a vector (p,q) with p < q; that is, assign arc

(pq) the index j - (I/2)(p-l)(2N-p) + (q-p), where 1 < p < q N, so

that I < J < n. The construction of the spanning tree requires the con-

sumption of a scarce resources available in supplies bi for

i - 1, 2, ..., a. Associated with each potential arc j of the spanning

tree are a + 2 known constants: cj, the cost of constructing arc J,

aij (I < I < a), the amount of resource i consumed during the construc-

tion of arc J, and ej, the flow capacity of arc J. (Since there exists

in any spanning tree a unique path between the source and a given sink,

ej is effectively an upper limit on the summation of demands over all
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sinks whose unique paths to the source include arc J.) Given d for
p

each sink p and c ali, a, %..., a, ej for each arc J, the problem

is to construct a minimal cost spanning tree subject to the resource con-

straints (i.e., the consumption of each scarce resource cannot exceed its

available supply) and subject to the requirement that there exists a feas-

ible flow (i.e., a flow on the arcs of the spanning tree that satisfies the

demands at the sinks without exceeding any arc capacity). Hereafter, this

problem will be referred to as the resource-constrained, capacitated mini-

mal spanning tree problem and abbreviated as the RCST problem.

Note the following characteristics of the RCST problem:

(1) It is assumed that between any pair of nodes there exists only

one arc under consideration for inclusion in the spanning tree;

Section 5 relaxes this assumption in order to consider, the case

where any one of mult:Lple arcs between a pair of nodes is

eligible for inclusion in the spanning tree.

(2) If for some arc J, c , ailj > bi for some I, or

ej - 0, then arc j may be excluded from consideration.

(3) The constants cj, &Ij for i - 1, 2, ..., m, and ej

for sow arc j may be interrelated; for example, a portion of

the construction cost cj may be attributable to the costs

of the scarce resources consumed and/or the magnitude of the

capacity or, for example, one of the resource constraints may

limit the number of arcs of a given capacity that may be in-

cluded in the spanning tree.

(4) Each resource constraint need not represent a resource in the

strict sense of the word. For example, by setting aij - I
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If arc .1 is incident to node I and aij -0 otherwise,

the i-th resource constraint may be used to require the degree

of node i in the spanning tree to be no greater than some

constant bj; hereafter, such a resource constraint will be

referred to as a "degree constraint".

(5) If the demands d. 2 < p < N, all equal 1, then an arc

capacity ej (1 < j < n) may be interpreted as the maximum

number of nodes that my access the source through arc 3 if

it were to be included in the spanning tree. For example,

ec-.K for any arc 3 incident to the source and e j

otherwise models the situation where at most K nodes (e.g.,

computer terminals) may be contained in any subtree connected

directly to the source (e.g., a central computer) by arc .1

(e.g., a port). As another example, ej - K for every arc

3 models a "reliability constraint" stating that at most K

demand nodes may be disconnected from the sink by the removal

(failure) of any arc from the spanning tree.

(6) Requiring the constructed network to be a tree implies that

there are reasons (perhaps physical or technological) that

prevent the flow from the source to a particular sink to be

transmitted simultaneously along more than one path.

In Its most general form, the RCMST problem has not yet been dis-

cussed In the literature; neither has the special case, hereafter referred

to as the Resource-constrained Minimal Spanning Tree (UMST) problem, in

which ej -. for every arc j (i.e., the flow constraints may be ig-

nored so that only the resource constraints are present). However, two
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special cases of the 10MST problems have received significant attention by

other researchers: (1) the Degree-constrained Minimal Spanning Tree (DST)

problem in which ej - - for every arc J and in which all resource

constraints are "degree constraints" as described earlier and (2) the

Capacitated Minimal Spanning Tree (CMST) problem in which bi - - for

every resource I (i.e., the resource constraints may be Ignored so

that only the flow constraints are present). Both the DMST and the CHST

problems are known to be NP-hard; consequently, most approaches to these

problems have been heuristic rather than exact. Kershenbaum [181 has sur-

veyed and analyzed the computational complexity of a class of heuristic

algorithms for the 01ST problem; Chandy and Lo [31 have proposed a branch-

and-bound algorithm for obtaining the exact solution to the 01ST problem;

and, more recently, Gavish [11, 12) has proposed a Lagrangean-based

approach to both the DKST and C0ST problems.

The remainder of this paper is organized as follows. Section 2 dis-

cusses applications of the RCST problem; Section 3 describes a branch-and-

bound algorithm (based on Lagrangean relaxation) for solving the RMST prob-

lem and Illustrates the algorithm with an example; Section 4 discusses the

modifications to the algorithm necessary to solve the more general RCMST

problem; Section 5 discusses further modifications necessary to solve two

extensions of the RCMST problem, the existence of multiple arcs between a

pair of nodes and the existence of multiple sources; finally, Section 6

reports som preliminary computational experience with a computer implemen-

tation of the algorithm.

In the reminder of this paper, the following conventions, notation,

and terminology will apply:
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(1) all vectors are row vectors;

(2) c will denote a vector whose J-th component Is cj, the

cost of constructing arc J;

(3) whenever "0" is used where a vector would normally appear, it

represents a vector with every component equal to 0;

(4) if x - (x, p2, ... , xn), then lxi t ;

(5) If x and y are two vectors having the same dimension, xy -

represents the product of x and y, where it is implicitly

assumed that y has been transposed so that the product is

defined;

(6) if x and y are two vectors having the same dimension,

max (z,y) represents a vector whose i-th component is the

maximum of the L-th component of x and the i-th component

of y;

(7) if A and 3 are two sets, A-9 denotes the intersection of

A and the complement of B, that is, the set of elements in A

but not in 5;

(8) the existence of a "feasible flow" in a tree implies that there

exists a flow on the arcs of the tree such that the flow on any

arc does not exceed the arc's capacity and the difference

between the flow out of a node and the flow into a node equals

the node's supply if it is a source, the negative of the node's

demand If it is a sink, and zero otherwise.
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2. APPLICATIONS

The RCMST problem has applications to the design and construction of

a tree network in which a set of demand nodes and a single source must be

Interconnected by selecting from a set of potential arcs, each having an

associated capacity and resource consumptions. For example, the demand

nodes may be computer terminals, the source may be a central computer, and

the arcs may be potential transmission lines (cf. (31, (12], and (181);

alternatively, the demand nodes may be offshore natural gas fields, the

source ay be an onshore separation and compression plant, and the arcs my

be potential pipelines (cf. [221).

Although the RCHST problem has applications to the design and

construction of spanning trees, the primary motivation for consideration of

the RC4ST problem was the problem of reconstructing a network after a

natural disaster, such as an earthquake. Cities, states, and countries

rely heavily on a variety of networks: energy networks (such as electrical

or natural-gas networks), communication networks (such as telephone,

telegraph, or computer networks), transportation networks (such as highway

or railroad networks), and water networks (such as networks for the

distribution of potable water or the removal of sewage). Using an analogy

with the human body's life-supporting "networks" (e.g., the vascular and

neurological system), C.M. Duke and D. F. Moran [71 coined the term

"lifelines" to refer to such networks, and their analysis and recommend&-

dions following the 1971 San Fernando (California) earthquake lead to an

Increased emphasis by professionals and academicians on the problem of

"lifeline earthquake engineering". In the last 10 years, much research has

been devoted to predicting the level of damage a particular lifeline might
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sustain In an earthquake and to designing new lifelines and "retrofitting"

existing lifelines to limit the potential damage as much as possible.

However, not nearly as such effort has been devoted to the decision

problems associated vith optimally restoring the services provided by a

lifeline that has been damaged by an earthquake. Restoration of service is

an important problem if one accepts the fact that in certain regions of the

world, earthquakes and the resulting damage to lifelines are Inevitable.

Many important lifelines do not have a tree structure, and, after

sustaining damage, the long-run goal for such a network will be to rebuild

the network so that it is as good or better than it was prior to the

earthquake. However, the short-run goal may be less ambitious. In the

short-run, the goal may simply be to allocate scarce resources (labor,

equipment, spare parts, etc.) to the repair process in such a way as to

restore sowe "minimal level of service" as quickly and economically as

possible. One possible Interpretation of "minimal level of service" is

that the short-run goal would be to construct a spanning tree (when only a

single source exists) or a spanning forest (when multiple sources exist) so

that every demand node would have access to a source. Stated more formally

In the context of the RCMST problem, suppose that the short-run

post-earthquake goal for a damaged network Is to construct a minimal cost

spanning tree by repairing a sufficient number of arcs. The restoration of

arc j (I < j < n) to its former capacity ej would cost cj dollars

and would consume aij (1 < i < a) units of the limited quantity of

bi units of resource i. The extensions discussed in Section 5 are

applicable if it is possible to repair an arc in a variety of ways, with

each may having a distinct associated cost, capacity, and consumption of

resources and/or if there exist multiple sources.



Letx dnot a3. SOLVING THE MNST PROBLEM

Lotx dnot abinary vector whose J-th component xj equals

1 if arc J is included in the spanning tree and equals 0 otherwise;

hereafter, such an x will be referred to as an incidence vector. Edmonds

[81 has shown that x is an incidence vector corresponding to a tree if

and only if x is an extreme point of the feasible region of a finite but

very large system of linear Inequalities; hereafter, x e T will denote

that xi w 0 or 1 for 1 < j < n and x also satisfies Edmonds'

system of linear inequalities, or equivalently, x is an incidence vector

corresponding to a tree.

The iNST problem can now be formulated as the following binary

integer linear program:

(P) Minimize In J1C iX

sujet o n a x < b for 1 <m,

and x eT.

Were it not for the a resource constraints, (P) would simply be a

classic MST problem and could be easily solved by either of the algorithms

discussed in Section 1. However, the presence of the resource constraints

precludes an easy solution of (P).

Using one of the binary integer linear programming algorithm to

solve (P) is Impractical due to the unmanageable size of the system of

linear Inequalities represented by x e T. Instead, the approach taken in



this paper will be to solve (P) by a branch-and-bound algorithm based on

the technique of Lagrangean relaxation.

Fisher [9], Shapiro [23], Fisher, Northup, and Shapiro (10], and

Geoffron (131 have all written excellent surveys of Lagrangean

relaxation. The technique was applied first in 1970 and 1971 by Held and

Karp [14, 151 in their highly successful branch-and-bound approach to the

traveling salesman problem. Held and Karp used a variant of a tree called

a 1-tree, defined as a network consisting of N nodes and N arcs and

obtained by connecting node 1 to any two nodes in a spanning tree

interconnecting nodes 2, 3, ..., N. Thus, a 1-tree always has one and

only one cycle, this cycle always contains node 1, and node 1 always has

degree two. Also, note that a minimum-cost 1-tree can be efficiently

found by constructing a minimum-cost spanning tree interconnecting the

nodes 2, 3, ..., N and then connecting node 1 to the tree by the two

arcs incident to node 1 having the lowest cost. Upon observing that a

tour for the traveling salesman is simply a 1-tree in which each node has

degree two, Held and Karp formulated the traveling salesman problem as the

minimum-cost 1-tree problem subject to the additional constraints that

each node has degree two. The formulation is similar to that of (P) with

T modified slightly to take into account that x should correspond

to a 1-tree and the resource constraints replaced by linear equations

requiring each node to have degree two. Held and Karp solved their

degree-constrained minimum-cost 1-tree problem by developing a

branch-and-bound algorithm that for the first time used the concept of

Lagrangean relaxation. Subsequent to the pioneering work of Held and Karp,
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many applications of Lagrangean relaxation have appeared in the

literature. Fisher [9) provides an excellent survey and a comprehensive

bibliography.

The discussion to follow of the branch-and-bound algorithm used to

solve (P) will employ the standard terminology (cf. [17, pp. 716-718).

In particular, at any point in the algorithm, let ZI denote the objective

value of the incumbent, the best known feasible solution of (P); unless a

feasible solution is known at the start, ZI  is initially set to -.

It is helpful to think of the algorithm as producing a rooted tree

(hereafter referred to as the b&b-tree in order to distinguish it from a

spanning tree), where the root of the bib-tree corresponds to problem

(P). Every other node of the b&b-tree corresponds to a problem similar to

(P) but having added restrictions placed on the incidence vector x • In

particular, associated with each node of the b&b-tree are two mutually

exclusive subsets A and B of the set of arc indices {1, 2, .. n;

the subset A consists of indices of arcs that not only form a subtree but

also must be "admitted" to the spanning tree (xj - 1 for j c A), and the

subset B consists of indices of arcs that must be "banished" from the

spanning tree (x j . 0 for j c B). Given its associated A and B, a

node of the b&b-tree corresponds to the binary integer linear program

(P Minimize c x
AD -i 1 .1~

subject to 1n a x <b for 1 < i < mJsl tijj- I

and x e TAll
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where TAB - T n (xJxj - 1 for J e A) n (xJxj - 0 for J c l.

Because TAS ._ T, problem (PAD) will be referred to as a "subproblem" of

problem (P). At any stage of the branch-and-bound algorithm, the TAB

sets associated with the leaves of the blb-tree are a partition of T; in

this sense, then, the subproblems (P A) associated with the leaves of the

bib-tree are a "partition" of the problem (P).

The Lagrangean relaxation (L-relaxation hereafter) of problem (PAl)

relative to the m resource constraints and a given nonnegative dual

vector 7- (1, "2 ... , ) is the binary integer linear program

n =m .n +T b )

(PA) Minimize i cI j + li-I Y113-1 ai x-

subject to x e TAt.

or, equivalently,

Minimize IJ1(c + 1,. iaij)xj I. l

subject to x e TAB

Note that for a given nonnegative X, (P A) is equivalent to an NIST

problem where the weight associated with arc j is - if j c A, " if

j 1 3, and (cj + '. a ) otherwise. As such, (k) say be solved

easily by any of the MST algorithms discussed in Section 1.

For a given A and B and any nonnegative X, let v: and

w*BM) denote the optimal objective values for problem (P AB) and

(P ), respectively. Clearly, w,(X) < vAB; that Is, wAB(k) is a lower

bound on vil for any nonnegative X. A traditional branch-and-bound

approach might use wi(O) as a lower bound for vT, that is, compute a
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lower bound on v by simply Ignoring the resource constraints and
vAB

solving the resulting minimal spanning tree problem. However, a branch-

and-bound algorithm based on L-relaxation seeks to increase the likelihood

of fathoming a subproblem (P AB) by searching for the greatest possible

lover bound by considering the following dual problem of (PAj)"

(D) maximize w* ~)
AB AB

subject to >, 10 for I < I <m

Note that although problem (DAB) will be referred to as the dual of

problem (PAB), a "duality gap" (cf. [10, p. 571 or [13, p. 87]) may be

present; that is, the optimal objective value for (DAB) may be strictly

less than the optimal objective value for (PAD). Also, as indicated in

the discussion below of the branch-and-bound algorithm, there are other

potential benefits to considering (DAB) in addition to an increased

likelihood of fathoming a subproblem (PAB) based on a lower bound on

its optimal objective value. In particular, instead of simply solving

0
(POB) as a more traditional approach might do, the attempt to solve (DA)

Involves the solution of a series of problems of the form (PQ) with a

different value of X each time; this increases the likelihood of

fathoming the subproblem (PAB) because each solution of a particular

(P X may result in one or more of the following possibilities:

(1) an increased lower bound on the optimal objective value of

(PAB),

(2) a decrease in the objective value of the incumbent,

-13-



(3) the optimal solution to (PAB).

Note that possibility (2) also may lead to the fathoming of other

subproblems besides the particular (PAB) under consideration.

Figure 1 contains a flow chart of the branch-and-bound algorithm; a

more detailed discussion of each of the steps follows. As indicated

earlier, for a given A and B and any nonnegative X, w*(k) denotes

the optimal objective value for problems (P also, let xAB(X) denote

an optimal incidence vector for (P ) and let sA (k) denote an
AB AB

a-vector whose i-th component is the value of bi - n aj xj evaluated

at x - x *(X), that is, the value of the slack variable for the i-th

resource constraint when evaluated at the optimal solution to (P x).

Steps 1, 2, and 10: The stack is a list of unfathomed subproblems.

A subproblem (PAB) on the stack is characterized by a "vector of

information" [A,B, X,w (k),s*B(k)], where X is not necessarily the

optimal solution to problem (DAB) but is such that wi (X) is the

greatest known lower bound on v A. Initially (Step 1), the stack contains

a single subproblem [#,#,0,w '(O),s (0)) corresponding to solving the

minimal spanning tree problem (P ) that results from ignoring the

resource constraints in problem (P**) = (P). When the stack contains more

than one item, it is helpful to think of item on the stack as being

ordered from the top to bottom in increasing magnitudes of the lower bound

w*(X). In selecting a new subprobleu from the stack (Step 2), the chosen

subproblem is the one with the lowest lower bound w * (k), that is, the
AB

subproblem on the top of the stack. Of course, if the stack is empty (Step

10), all subproblems have been fathomed and the incumbent incidence vector
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is the optimal solution to (P); actually, since it is not unusual for the

incumbent to change after a subproblem has been placed on the stack, a

non-empty stack should be emptied by the fathoming of the entire stack

whenever the item on the top of the stack has a lower bound * M

greater than or equal to the Incumbent's objective value.

Overview of Steps 3-6: Upon the selection of a subproblem (PAB)

characterized by the "vector of information" [A,B,X,w (), s (k)], an

attempt is made to solve the problem (DAB). Because of the work of

Edmonds [8] discussed earlier in this section, problem (Px) has the

Integrality Property of Geoffron [13, p. 89]; hence, the optimal solution

to problem (DAB) may be obtained in principle as the optimal dual

variables associated with the resource constraints of the linear program

that results from replacing "xj - 0 or 1" with "0 < xj . 1"

(1 < j < n) in the binary integer linear program (PAB). However,

solving (DAB) in such a manner is impractical due to the large number

of linear inequalities represented in (PAB) by x c TAB; hence, an

attempt to solve (DAB) will be made through an iterative procedure

(Steps 3-6) known as subgradient optimization (cf. [9], [10], [131, and

[161). Subgradient optimization is so named because -s* (X) is a sub-
AB

gradient of the objective function for (DAB) at the point X, and the

procedure optimistically uses this subgradient as if it were a gradient

pointing in a direction of steepest ascent. Iteration k of subgradient

optimization consists of the following steps:

(3) movement to a new dual vector Xk obtained recursively from )k-I (1 )
xk

solution of the L-relaxation (P ), (5) attempting to fathom the
AB



k4

subproblem (PAB) based on the results of solving (PAB), and (6)

deciding whether to perform another iteration if the fathoming attempt was

unsuccessful. The hope is that the sequence (6k } will yield a good

suboptimal, if not an optimal solution of (DAB). Each step of

subgradient optimization will nov be discussed in detail.

Step 3: The revision of the dual vector k is the most complicated

procedure in the branch-and-bound algorithm. The procedure is based on a

proof (omitted here but contained in [15] and [16]) that if the nonnegative

scalar Ok  is sufficiently small, then

kk-max iO xk-l _ e B* (k1)]
k AB

is closer than Xk-l (as measured by Euclidean distance) to the optimal

solution of (D ), although wA ( Xk ) > * (k k-1) need not hold. The
AB AB -? ) wv(?l

complication, then, lies in the choice of Ok; Held and Karp [15]

successfully used Ok - 1 for all k in their work on the traveling

salesman problem, and Held, Wolfe, and Crowder [16] later validated a more

general method for choosing a value for Ok. (Those readers not

interested in further detail on the procedure for revising k should skip

to the discussion of Step 4.) Actually, the procedure used for revising X

in the computer implementation of the branch-and-bound algorithm discussed

in Section 6 is a generalization of the above expression for kk that is

due to Camerinl, Fratta, and M4affloll [2) and Crowder [5]. For

completeness, the procedure is now sumsarized without justification. Given

a subproblem (FAB) characterized by the "vector of information"
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B X* 0 ). and set the a-vector do  0; the[A ',,AB( ,AB(X] e O h

sequence of dual vectors {Xk) is generated by the recursions

dk (,k-1 +dk-l

1 if Z Tm

I k-I

- woQBk-) if Z<

X- max [0,, k- l + ekdk ]

vhere 1 is a known nonnegative constant (1 - 0.6 in the computational

experience discussed in Section 6) and (2k) is a predetermined sequence

of nonnegative scalars generated according to the following policy (c.f.

[9, p. 8], [16, p. 68] and [5, p. 361]): (1) set ak - 2 for 2N

iterations, where N is the number of nodes in the network, (2) then

successively halve both the value of ak  and the number of iterations

ak remains constant until the number of iterations is less than 5, (3)

thereafter, ak  is halved every 5 iterations. Note that the above

expression for dk can be expanded to yield

dk S).(k-2 _* k-2 * (k-3) - *
AS, -. -S - '"- r-.,S(-

so that the direction of movement away from Xk-1 is a discounted

composite of the current and previous slack vectors (subgradients).
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Step 4: Given the revised dual vector X, (PAB) is equivalent to

an MST problem where the weight associated with arc J Is -- if j e A,

if j c B, and (cj + 1XIaij) otherwise. As discussed in Step 7

below, the arcs whose indices are in A form a subtree. Hence, (P.) may

be solved efficiently by first forming the subtree of "admitted" arcs and

then continuing with the Prim-Dijkstra algorithm as described by Prim [211.

Step 5: Upon solving (Pa), an attempt is made to fathom the

subproblem (PAB), that is, to remove the subproblem from further

consideration. As indicated by the flowchart contained in Figure 2, the

fathoming subroutine consists of the four steps A, B, C, and D. In Step

A, a check is made on whether (1+c) * (k) > holds, where 100c iswAB( - I hls r I0 8

the given percentage error tolerance (8 - 0.00, 0.01, or 0.05 in the

computational experience discussed in Section 6). With w* (X) being a
AB

lower bound on v* , if (1+6)w*B(X) > Z1 holds, then the subproblem can

be fathomed since 1OOc is the maximum percentage error that could result

if the optimal incidence vector for problem (P) belonged to the feasible

region of (P). If (l+e)W*(k) < Zi, the fathoming subroutine proceeds

to Step B where a check is made on whether xj(k) is a feasible for

(PAB) and therefore (P), that is, on whether the minimal spanning tree

for (PX) also satisfies the resource constraints of (P). The

feasibility check is easily made by checking for a strictly negative

component in the slack vector s *(k); if * (k) > 0 does not hold, the

fathoming subroutine ends with (P ) unfathomed; if a*(k) > 0, the

fathoming subroutine proceeds to Step C in order to update the incumbent if

necessary. More specifically,
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0. cxzQ~ -ALm" < ZIAA

holds since (PAB) was not fathomed in Step A; however,

ex M )-wV(X) + ka (X) < ZI

need not hold. Given the verification in Step B of the feasibility of

X* (k) for problem (P), if cx* (X) < Z does hold, then x* M?~AB AB I AB
becomes the new incumbent; otherwise, the incumbent remains unchanged.

Regardless of the outcome of Step C, Step D makes another attempt to fathom

(PAB)- In particular,

As AB AB Al- cAl(

where the last inequality follows from the verification in Step B of the
feasibility of x* (X) for problem (P ); hence, if complementary

AB AS

slackness holds, that is, if Xs* (X) - 0, then w* () - v! c (XO) so

that X and x(* ) are optimal solutions to problems (DAl) and (PAl),

respectively. Actually, if xs* (x)< C w!(x) , subproblem (PA) can be

fathomed since 100C is the maximum percentage error that could result by

assuming x* (X) Is the optimal solution to (P ). Note that if
AD AB

subproblem (P ) is fathomed in Step D, then xB(k)) will always have

Just become the new incumbent in Step C since

M - w X) + )asM < (1+C) X) <

AS AS A-1W-



where the first inequality follows because )s* (X) e_ w* (k) and the

second inequality follows from the fact that (PA) was not fathomed in

Step A.

Step 6: If the subproblem (P AB) was not fathomed in Step 5, a

decision must be made as to whether to continue with subgradient

0 1 2k
optimization. Let X0, X , X , ..., denote the dual vectors generated

during the first k iterations of subgradient optimization. Recall that

wv().O), w ( ) w (X), ..., w* (Xk ) need not be a nondecreasing
A 'AB AB AB

sequence; hence, it is necessary during subgradient optimization to

initialize and update an incumbent dual vector X , that is, that vector

among hO, X1, , ..., k that produces the greatest lower bound on v*.

A (k+l)-st iteration of subgradient optimization is performed unless one

of the following two situations occur: (1) k > 4N, where N is the number

of nodes in the network, or (2) within the 5 most recent iterations,

W *(X') has not increased by at least O.IZ.

Steps 7, 8 and 9: After an unsuccessful attempt to fathom the

subproblem via subgradlent optimization, (PAB) must be partitioned into

two subproblems. Refer to the set of arcs whose indices are in A as the

"A-arcs". Assume inductively that (if A * #) the A-arcs form a subtree

and that at least one of the arcs of the subtree is incident to the source;

hereafter, this subtres will be referred to as the A-subtree. If A # #,

let JAB denote the set of arc indices such that j c JAB if and only if

J A 3 and one of the two nodes which arc j is incident is a member of

the A-subtree and the other node is not; if A- *, let J equal the
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indices of those arcs not in B but incident to the source. Also, let J*

denote the index that minimizes c + 1 a over j J (recall XI
j i-I)L i AB

is the incumbent dual vector after subgradlent optimization). Then,

partition (PAl) into the two subproblems (P (is },) and (P

Note from the inductive hypothesis and the definition of J*, that the

Au(J * 3-arcs form a subtree and at least one of the arcs in the subtree is

incident to the source. Note also that J* is simply the index of the arc

that connects the subtree corresponding to A (node 1 if A- *) to its

closest neighbor as measured by the objective function coefficients of

{xjj C JAB) in problem (Pu); that is, J* was the index of the first

arc added to the A-subtree when the Prla-Dijkstra algorithm was used

during subgradient optimization to solve the 
MST problem (P X)

Consequently, (P0I ,) and (P)*) have the same optimal solution
Au~j 1,1 AB

so that (P ) , in the form of the "vector of information"

[AU{j*},B,)',wAl( ),SAB ), should be added to the stack of unfathomed

subproblemas unless fathoming is possible due to the occurrence of one of

the following situations:

(1) The amount of a particular resource used by the "admitted"

AU ( )-subtree already exceeds the supply available for the entire spanning

tree; that is, IJeAU{J, ) aiJ > b . In such a case, (P Au5,B ) can be

fathomed because it has no feasible solution.

(2) Situation (1) has not occurred but Au{j*) contains N-I

indices, where N is the number of nodes in the network. In such a case,

(P Auj),B ) can be fathomed because its only feasible solution, and there-

fore its optimal solution, is known, namely the spanning tree formed by the

N-I arcs corresponding to Au(j*}.
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The subproblem (P A,Bu~i}) cannot be dealt vith as easily and

mast be treated as follows:.

(1) A lower bound on v U is obtained by solving (as dis-
A,IU(j*

cussed in Step 4) the NST problem (PkuI
A,Bu~j}

(2) Using the resulting w *(), x, ().), and

AIu{j (X), an attempt is made to fathom (PAIu{j,}) by applying the

fathoming subroutine as described in Step 5; note w* }(k) is alwaysA.Bu{J*)

greater than or equal to w* (X') and may even equal - if Bu{J*)

contains many arc indices.

(3) If (PA,BUj*) cannot be fathomed, it is added to the list of

unfathomed subproblems in the form of the "vector of information"

ABU(j) ABU(J*)

To illustrate the branch-and-bound algorithm discussed in the

previous section, consider the following example having 6 nodes, 15

potential arcs, a supply of bl - 23 units of resource 1, and a supply of

b2 - 12 units of resource 2. Figure 3 provides the data for each

potential undirected arc (pq), 1 < p < q _ 6; the upper left corner of

the cell corresponding to arc (p,q) contains the arc's index J; the

center of the cell contains the cost cj of including the arc in the

spanning tree; the lower right corner contains the amounts alj and

a2j of resources 1 and 2, respectively, consumed by including the arc

in the spanning tree. For example, the arc incident to nodes 3 and 5 has

index 11 and, if Included in the spanning tree, would cost 8.5 and consume

4 units of the first resource and 2 units of the second resource.
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The application of the branch-and-bound algorithm (with = 0.6 in

Step 3 and an error tolerance of e - 0 in Step 5) results in the

beb-tree of Figure 4. Each box (node) of the beb-tree corresponds to a

subproblem (PAB) and contains, either explicitly or implicitly, the

subprobles "vector of information" [A,B,X,w (),SAB(X)M as described in

the discussion of Steps 1, 2, and 10 (to conserve space, w)AB) and

a*(X) are abbreviated by w and s, respectively); if a box does not

explicitly contain all components of the "vector of information", it is

implicit that the missing items are identical to the corresponding items in

the box's "father" in the bb-tree. The boxes are numbered according to

the order In which they appeared during the execution of the algorithm; two

boxes created simultaneously by partitioning (branching) in Step 7 have the

same number and will be distinguished hereafter by appending "a" to the

number of the left most box and "b" to the rightmost box. Thus, at "time"

t (1 < t < 18), the bib-tree consists of the subtree in Figure 4 that

spans the boxes having numbers less than or equal to t; the leaves of this

subtree comprise the stack of unfathomed subproblems at "time" t.

Box 1, the root of the bib-tree, indicates that the minimal spanning

problem that results from ignoring the resource constraints in (P) has an

optimal solution that consumes 1 more unit of each resource than is

available; hence, the branch-and-bound algorithm must be used. A box

having only one branch leaving it (boxes 1, 3a, 3b, 5a, 5b,7a, 9a, 9b, 12a,

and 17a) corresponds to the start of a sequence of iterations of

subgradient optimization (Steps 3-6); the results of subgradient

optimization appear Immediately below in the box's only "son", where the

son contains "no change" if subgradient optimization failed to improve the
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lower bound WAB(X); the intermediate results of subgradient optimization

do not appear in Figure 4 but instead are summarized along the branch from

father to son by a fraction (in parentheses) consisting of a denominator

equal to the number of iterations and a numerator equal to the number of

iterations that resulted in an improved lower bound. A box containing the

results of a sequence of iterations of subgradlent optimization is one of

two types. The first type (boxes 2, 4, 6, 8, 11, 14, and 16) arises when

subgradient optimization is terminated via Step 6 so that the subproblem

(PAB) must be partitioned in Step 7 into (PA (j*}B) and (PA,BUj*}),

represented respectively in Figure 4 by the box's "left" son and "right"

son; the second type (boxes 10, 13, and 18) arises when subgradient

optimization terminates via Step 5 with the subproblem's fathoming (for the

reason given in parentheses within the box). Boxes 7b, 12b, 15a, 15b, and

17b, the only boxes not yet discussed, each represent a subproblem created

by a partitioning in Step 7 but never partitioned further, either because

it (box 12b or 17b) was fathomed (for the reason given in parentheses

within the box) in Step 8 or because Just prior to the algorithm's

termination it (box 7b, 15a, or 15b) was one of several fathomed

simultaneously in Step 10 when the lower bound of the top item (box 15a) on

the stack of unfathomed subproblems exceeded the incumbent's objective

value.

As indicated by asterisks in Figure 4, there were three incumbent

changes at Step C of the fathoming subroutine: the first between boxes 1

and 2 during a subgradient optimization iteration that failed to improve

the lower bound w* M) and the second and third in boxes 13 and 17b,
AB

respectively, when the subproblems they represent were fathomed due to
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complementary slackness. Note that the third and last incumbent is

optimal. The optimal spanning tree consists of arcs (1,6), (6,5), (1,2),

(6,4), and (4,3); it has a total cost of 22.7 and consumes 23 units of the

first resource and 12 units of the second resource.

This small example illustrates the potential advantages of a

branch-and-bound approach based on Lagrangean relaxation. Although only 8

of the 49 iterations of subgradient optimization resulted in an improvement

of at least 0.1% in the lower bound, these 8 increases in the lower bound

together with the three incumbent changes resulted in a small b&b-tree.

As discussed at the end of Section 6, a more traditional branch-and-bound

approach that bounds the optimal objective value of (PAB) only once by

solving (P0) results in a b&b-tree having over 400 nodes.

4. SOLVING THE RCMST PROILEM

If e < 2 d for some arc J, then the optimal solution to (P)

need not satisfy every arc capacity constraint. Consequently, the

branch-and-bound algorithm of the previous section must be modified.

Recall that T denotes the finite set of incide"rp veatorn

corresponding to trees. Let F denote a subset of ' such that x c F

if and only if x corresponds to a tree in which there exists a feasible

flow, that is, a flow from the source satisfying the demands at the sinks

without violating any arc capacity constraints. The RCMST problem can now

be expressed as
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(Q) Minimise In

subject to n aijxj < bi for 1 < i < m

and x e F

Given a set A consisting of indices of "admitted" arcs and a set

B consisting of indices of "banished" arcs, define the subproblem (QAB)

by

(QB) Minimize I x
(QAB)i-1. jxj

subject to In a x < b for 1 ( i ( mJ-1 ii J- -

and x c FAB ,

where FAB F n (xlx j = I for J c A} n (xfxj - 0 for J c B}. Since

F cT the optimal objective value of (P X for any nonnegative X
Al- AB'A

furnishes a lower bound on the optimal objective value of (QAB); that is,

the optimal objective value )f (QB) can be bounded from below by

relaxing the resource constraints and ignoring the requirement that there

exist a feasible flow in the tree corresponding to x. Ignoring rather

than relaxing the requirement of a feasible flow is necessary because

x c FAB cannot be expressed as a system of linear inequalities in the

binary vector x.

Overview of Necessary Modifications. Suppose that the subproblem

(QAB) is under consideration at some point in the branch-and-bound

algorithm. Recall that if A # *, the A-arcs (the arcs whose indices are
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in A) form the A-subtree which includes the source as one of its nodes.

Given the A-subtree and j c A, let fj denote the unique flow on arc

j necessary if the source is to satisfy the demands of the other nodes in

the A-subtree. For example, consider the A-subtree of Figure 5, where

node I is the source, the demand dp for each other node p is shown

adjacent to the node, and the ordered pair adjacent to each arc j con-

sists respectively of the capacity ej of the arc and the unique flow

fj on the arc necessary if the source is to satisfy all demands. Assume

Inductively that {fjI j c A) is known and is a component of the "vector

of information" for the subproblem (QAB). Also assume inductively that

instead of being stored in the "vector of information" as a set of arc

indices, A is stored as an ordered list of ordered pairs of nodes, where

an ordered pair (p,q) appears in the k-th position on the list if the

undirected arc incident to nodes p and q was the k-th arc added to

the A-subtree and the direction of flow on the arc is from p to q; note

that the index of arc (p,q) can be computed easily whenever needed from
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the formula given at the beginning of Section 1. For the example of Figure

5, suppose A is stored as the following ordered list of ordered pairs

Arc (pq) Index J

(1,11) 10

(11,4) 46

(1,6) 5

(11,12) 96

(12,15) 102

(11,7) 73

(12,2) 24

where the indicated index of each ordered pair (p,q) is not part of the

data structure but is computed whenever needed from the formula given at

the beginning of Section 1 (with N - 15); note that the direction of flow

on each arc is from p to q. Given such a data structure for A, it is

simple to update the flows when an arc is added to the A-subtree; the

procedure would be as follows:

(1) Let (p,q) denote the arc to be added, where p is a node in

the A-subtree and q is not; of course, the flow on arc (p,q) must be

dq;

(2) increase by dq the flow on each arc of the unique path from

the source to node p; note that this is easily done in one upward pass

through the data structure for A since the ordered pair (r,s) that must

precede the ordered pair (s,t) on the only path from the source to node
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p is the unique ordered pair higher on the list in which s appears as

the second component. In the example of Figure 5, suppose that an arc

(2,q) is added to the A-subtree; then by repeatedly scanning the second

component of the above data structure for A, the flows on the arcs of the

unique path from the source to node 2 are increased by dq in the

reverse order (12,2), (11,12), and (1,11).

Given the above overview, it is now possible to describe the

modifications to the branch-and-bound algorithm of Section 2 necessary for

it to solve (Q) instead of (P), that is, the RCNST problem instead of

the IdRST problem.

Steps 1, 2, and 10. As discussed in the overview, the "vector of

information" characterizing a subproblem (QAB) now includes the current

values of the flows on the arcs of the A-subtree. In particular, the

vector of information" is [A,B,{fjli c A)),wA(k),sB(h)], where A is

stored as the data structure discussed in the overview. Since (fjj e A)

is uniquely determined by A, an alternative to including (fjf j c Al in

the "vector of information" is computing it whenever necessary; however,

because the computation cannot be performed in a straightforward manner,

the tradeoff between increased computation time and decreased storage does

not seem to favor this alternative.

Step 3. No modifications are necessary.

Step 4. The feasibility check in Part B of the Fathoming Sub-

routine will be facilitated if, as the Prim-Dijkstra algorithm starts with

the A-subtree and adds an arc at each iteration, the flows on the arcs of
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each successive subtree are updated (using the procedure discussed in the

overview) until either (1) an arc is added at some iteration that forces

the flow on at least one arc of the current subtree to exceed its capacity

or (2) the optimal solution to (P X ) is obtained and the flow on the

corresponding tree satisfies the arc capacity constraints. Note that (I)

may occur since the requirement that there exist a feasible flow in the

optimal solution is not present in (Pa).

Step 5. The Fathoming Subroutine makes and attempt to fathom the

subproblem (QA) using the results of solving (P X) for some X > 0.

Of course, the feasibility check in Part B now refers to checking whether

xA(M is a feasible solution of (QA) and, therefore, (Q); the check is

easy given sA(X) and the modification described in Step 4.

Step 6. No modifications are necessary.

Steps 7, 8, and 9. No modifications are necessary to Step 7; as

before, j is computed and (Q ) is partitioned into the two subproblems

(QAU(Je),B) and (QAU(J*). The latter subproblem is treated as before

in Steps 8 and 9; however, the former subproblem is handled differently.

First, an attempt is made to fathom (QAU(i*),B) by checking for the

occurrence of one of the two situations described in the discussion of Step

8 In Section 3; then, if this is unsuccessful, the flows on the arcs of the

AU(j*)-subtree are updated (using the procedure discussed in the overview)

to reflect the addition of the arc J* to the A-subtree. If the updated

flow violates at least one of the arc capacity constraints, (QAu(j*},B)
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is fathomed because it has no feasible solution; otherwise, (QAUj. ),) i

added to the stack of unfathomed subproblems in the form of the "vector of

information [A U (j*),B (fjl j c A U (J**), w4* ()!)'s* * )]
Au(J*),E AU{J*},I

5. SOLVING EXTENSIONS OF THE RCQST PROBLEM

This section discusses the modifications to the branch-and-bound

algorithm necessary to analyze two extensions of the resource-constrained,

capacitated minimal spanning tree problem: the existence of multiple arcs

between each pair of nodes and the existence of multiple sources.

Multiple Arcs Between Each Pair of Nodes

In many practical situations, it is possible to construct an arc

between a pair of nodes in a variety of ways, with each way having its own

associated cost, capacity, and consumption of resources. For example, it

may be possible to increase the capacity of an arc between a pair of nodes

by simultaneously increasing the construction cost, increasing the

consumption of some subset of resources, and decreasing the consumption of

another subset of resources.

Although requiring additional notation to explain, the modifications

to the branch-and-bound algorithm necessitated by the existence of multiple

arcs between each pair of nodes do not require a significant increase in

computational effort. More specifically, assume the indices 1, 2, ... , n

of the potential arcs for the spanning tree resulted from an arbitrary

indexing rather than from the method described at the beginning of Section

1; for each node pair (p,q) with p < q, let J denote a set of arc
pq

indices such that J1 C J if and only if arc J is incident to nodes p
pq
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and q. The only modification to the branch-and-bound algorithm occurs in

Step 4, the solution of (PA) for a given A, B, and X; in particular,

(Pa) is now solved as follows:

(1) Form the A-subtree.

(2) For each node pair (p,q) for which at least one node is not

in the A-subtree, temporarily replace the multiple arcs

incident to the two nodes by a single arc having an associated

weight of min [c + I X a ] if J - B# or
pq Pq

if J cB.
pq -

(3) Starting with the A-subtree, use the Prim-Dijkstra algorithm

as described by Prim [21] to solve the minimal spanning tree

problem with the arc weights as computed in (2).

Note that the only "extra work" necessitated by multiple arcs between each

pair of nodes is the computations described in (2); since the effect of (2)

is to ignore all but the "cheapest" arc (as measured by the revised cost

+ XI Xaj) between a pair of nodes, there is no increase in the
. - I i

size of the minimal spanning tree problem that must be solved to determine

eoptimal spanning tree for (PA).the otmlsann refr(

Multiple Sources

Consider an extension of the problem in which each node must have

access to one and only one supply center (hereafter, a source) from which

it will receive a particular commodity. Suppose there are two means of

creating access from a node to a source: (1) direct access, that is,

construction of a source at the node itself, and (2) indirect access, that
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is, construction of a unique path to the node from one and only one other

node at which a source has been built. Clearly, the resulting network is a

spanning forest, that is, a network in which each node belongs to one and

only one of a set of disconnected trees; note that each tree in the

spanning forest contains a single source and the (possibly empty) set of

nodes it supplies in addition to itself. Restricting the network to a

spanning forest implies that there are reasons (perhaps physical or

technological) that prevent the flow destined for a particular node to be

transmitted simultaneously from more than one source or along more than one

path.

As before, if the spanning forest ultimately includes a potential

undirected arc, the arc would have a known flow capacity and would result

in the incurring of a known cost and the consumption of known quantities of

each of the resources. Also as before, associated with each node is a

known demand for the commodity; however, in addition, if a source were

constructed at node p, it would have a known supply of e' units and
p

would result in the incurring of a known Cost c' and the consumption of
p

a' units of resource 1, 1 < i < m. Given the above quantities as wellip

as the available supply of each resource used in the construction of arcs

and/or sources, the problem is to construct a minimal cost spanning forest

subject to the following requirements: (1) all resource constraints are

satisfied, (2) each tree in the forest contains exactly one node at which a

source has been constructed, and (3) there exists a feasible flow in each

tree in the forest. Note that a resource constraint cannot only be used

(as indicated in Section 1) to limit the degree of a node in the spanning

forest but can also be used to limit the number of sources constructed.
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A straightforward procedure transforms this minimal spanning forest

problem Into an RC1ST problem; more specifically, augment the original

N-node network with a super-source, a new node having an infinite suppiy of

the commodity, and join each node p to the super-source vith an

artificial arc having a capacity of e', a cost of c ', and resource
p p

consumptions a 1 < i < n. Thus, the data associated with the construc-

tion of a facility at node p is now associated with the artificial arc

joining node p with the super-source. Note that multiple artificial arcs

between a node and the super-source could be used (as discussed earlier in

this section) if there were more than one way to construct a source at node

p. Clearly, the optimal spanning tree in the revised network is equivalent

to the optimal spanning forest in the original network; in particular, the

optimal spanning forest for the original problem is obtained from the

optimal spanning tree for the revised problem by deleting the super-source

and any arc incident to it, with the understanding that a source is con-

structed at each node to which a deleted artificial arc was incident.

Thus, this multiple-source version of the problem is equivalent to an RCHST

problem with one more node than the original problem; as such, its solution

entails a negligible increase in computational effort over the RCMST

problem.

6. COMPUTATIONAL EXPERIENCE AND CONCLUSIONS

A FORTRAN computer program for solving the RCHST problem has been

implemented on the IBM 3033 computer at Stanford University. The computer

program consists of approximately 1000 statements. The variable memory

requiremnts of the program are a function of the number of nodes in the
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network, the number of resource constraints, and the maximum number of

unfathomed subproblem that may be on the stack simultaneously; denote

these parameters by N, a, and S, respectively. The required total number

of kilobytes (1000 bytes) of memory is given by

ON 2+2N2 +1000-1 [N96(N1]-1000~2 + 01 + [ 1.6- + (10+82m]Io-0

Table I tabulates the above expression as a function of S for various

values of N and m; the table is approximate in the sense that the

constant term has been rounded to one decimal place and the coefficient of

S has been rounded to three decimal places. It can be seen from both the

expression and the table that the memory requirement is most affected by

S; the last column of Table I provides the maximum value of S assuming an

availability of at most 7000 kilobytes of memory, the approximate

availability of memory on Stanford's IBM 3033. Table I, in conjunction

with the computational experience described below, indicates that in most

cases the limiting factor in solving RCNST problems should be the execution

time rather than the memory requirement.

In order to gain some preliminary computational experience with the

algorithm, a random-problem generator was constructed; it executes the

following steps:

(1) The determination of the demands at the nodes is via one of

three methods, depending on which problem type is desired. To obtain the

most general RCMST problem, the demand dp at node p (2 < p < N) is an

independent random variable uniformly distributed on the integers in the

interval [1, 50). To obtain an important special case of the RCST
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problem, dp is set equal to I for 2 < p N. Finally, to obtain an

RMST problem (i.e., without flow constraints), dp is set equal to 0

for 2< p <N.

(2) To insure the existence of at least one feasible solution to

the RCMST problem, a feasible tree is randomly generated in N-1

iterations. More specifically, the trivial subtree consisting only of node

1 is iteratively expanded; iteration k consists of adding arc (p,q) to

the subtree, where p is randomly selected from the k nodes belonging to

the current subtree and q is randomly selected from the N-k nodes not

yet a member of the current subtree. Let T denote the set of indices of
r

those arcs comprising the randomly generated trees and, for j e Tr, let
ir

f denote the flow on arc j that would be necessary to satisfy the node
J

demands. Then, for j c Tr, the flow capacity e is an independent

random variable uniformly distributed on the integers in the interval

[fJ' 4-2 dp]; note that this insures that the randomly generated tree will

always satisfy the flow capacity constraints. Also, for J c Tr, the

construction cost c is an independent random variable uniformly

distributed on the integers in the interval [0, 99], and the consumption

aij of resource i (1< i < m) is an independent random variable

uniformly distributed on the integers in the interval [0,9].

(3) Recall that there are potentially n - (1/2)(N)(N-1)

undirected arcs, each with a distinct index j equal to its position in a

lexicographic ordering of the n arcs based on the representation of an

arc as a vector (p,q) with p < q. For each arc j that is not a member

of the randomly generated tree, an independent random number pj is

generated that is uniformly distributed over the continuous interval
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[0,1]. If pj < (10/N), then arc j is referred to as a "potential arc";

the associated c and aij (1 < i < m) are randomly generated as

described in Step 2, but the flow capacity e is an independent random

variable uniformly distributed on the integers in the interval

[minimum dp, 12 dp]. If p > (10/N), then arc j is effectively

eliminated from inclusion in the optimal spanning tree because cj and

a (1 < i < m) are set equal to an extremely large number and e is set

equal to zero. The usage of (10/N) as the "cutoff valve" for p

implies that, for n > 10, the expected number of potential arcs for

inclusion in the spanning tree is 5(N-1) + A, where 0 < A < (N-1)

reflects the special treatment given to the arcs of the randomly generated

tree; thus between 5N and 6N is a reasonable estimate for the number of

potential arcs in any randomly generated problem.

(4) The remaining step is to determine values for b, an r-vector

whose i-th component is the availability b of resource i

(1 < i < in). Let bL denote an r-vector whose i-th component is the

amount of resource i consumed by the randomly generated spanning tree of

Step 2. Also, let bv denote an mr-vector whose i-th component is the

maximum amount of resource i consumed by any spanning tree comprised of

any of the potential arcs; this maximal usage of resource i is found by

solving a maximal spanning tree problem where the "cost" of arc j is

a Finally, for some constant X satisfying 0 < X < I, let

IfIb - (I-X~)b L + AbU Note with this choice of b that the randomly

generated spanning tree of Step (2) satisfies the resource constraints for

all values of X; also note that as X increases from 0 to 1, the

number of spanning trees satisfying the resource constraints also
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increases. Rather than use b - (l-k)bL + XbU for some 0 < X < 1, a

slight modification is made. More spec'fically, to insure a nontrivial

solution to the RCHST problem, it is necessary to insure the infeasibility

of the spanning tree that solves the simple MST problem with the arc costs

of the RCNST problem. To do so, this simple MST problem is solved, some

resource i * is chosen for which the consumption of resource i * in the

MST equals a value v that is strictly greater than component i * of bus

and component i* of b is reset to v. (Note that the assumption of

the existence of such an i * is made without loss of generality since such

a condition can be obtained eventually by simply discarding the current set

of data and returning to Steps (2) and (3) to generate new data.) After

resetting component i* of bu, recomputing b - (l-X)bL + b U (0 < X < 1)

leads to a set of resource constraints that is always satisfied by the

randomly generated spanning tree of Step (2) but never satisfied by the

solution to the simple HST problem; thus, a nontrivial optimal solution to

the RCQST problem exists. In the computational experience discussed below,

X - 0.5 was used.

Tables II, III, and IV summarize the results of some of the

computational experience. Table II summarizes results for six RMST

problems each having 50 nodes and 5 resource constraints; Table III

summarizes the results for six RCMST problems each having 20 nodes, 3

resource constraints, and a unit demand at every node; and Table IV

summarizes the results for six RCMST problems having 20 nodes, 3 resource

constraints, and random node demands as described in Step (1) of the

random-problem generator. The column headings of Table II are described

more explicitly by the following:
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(I) The second column contains lO0c. Recall that lOOc is the

maximum percentage error that might result from using the fathoming rules

discussed in Section 3; that is, the cost of the "e-optimal" solution to

the problem may be at most l00 percent higher than the exact (C-0)

minimal cost. The actual percentage error that resulted is given in the

ninth and last column of Table II.

(2) The third column contains the number of nodes in the

branch-and-bound tree generated to solve the problem.

(3) The fourth column contains the number of MST problems solved

during the executions of Steps 4 and 8 of the algorithm.

(4) The fifth column contains the maximum number of unfathomed

subproblems that were simultaneously on the stack and, in conjunction with

Table I, provides insight into the memory requirements of the problem.

(5) The sixth, seventh and eighth columns are related. The sixth

column (labeled (a)) contains the CPU time (excluding compilation) that

elapsed until the eventual c-optimal solution became the incumbent

solution, and the seventh column (labeled (b)) contains the total CPU time

(excluding compilation) required to solve the problem. The ratio

lO0(b-a)/b contained in the eighth column is the percentage of the total

execution time that was required to verify that the c-optimal solution

that became the incumbent at the time given in the column labeled (a) was,

in fact, an c-optimal solution; in this sense, the ratio measures "wasted"

computational effort. The above descriptions also apply to the headings of

the columns of Tables III and IV.
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The purpose of the computational experience summarized by Table. II,

III, and IV was to demonstrate the algorithm's potential to solve large

problems and to gain insight into the algorithm's behavior while solving a

series of related problems. The reported execution times are meaningful

only in this context. Lower (Higher) average execution times for similar

problems could have been obtained by decreasing (increasing) the arc

density in Step (3) of the random-problem generator and/or by increasing

(decreasing) X in Step (4) of the random-problem generator. Also,

significantly lower execution times would result if a computer programmer

more knowledgeable than this author were to implement a more sophisticated

algorithm (c.f., [41, [191, or 1241) for solving the MIST problems in Steps

(4) and (8) of the algorithm; the solution of the MST problems constitutes

a major portion of the computational effort so that a more efficient

algorithm would have a significant favorable impact on execution times.

Another operation done repetively during the algorithm's execution is the

insertion of a subproblem into its proper position on the stack of

unfathomed subproblems based on the value of its lower bound; currently

done in a somewhat naive manner, this operation could be coded by a more

sophisticated computer programmer than this author to execute significantly

faster. A final potential way to reduce execution time is to "fine-tune"

the parameters used to revise X in Step (3) of the algorithm as described

in Section 3.

In light of the comments of the preceding paragraph, conjectures

rather than conclusions are In order. Table 11 indicates that the

algorithm has the potential to solve very large iNST prbems, especially

if one Is willing to forego exact optimality and accept accuracy to within
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12 or even 52. However, Tables III and V indicate that the algorithms

potential for solving large RCHST problems is less promising, even if one

is willing to accept accuracy to within 52 rather than exact optimality.

However, since the i-th problem of Table III is identical to the i-th

problem of Table IV with the exception of node demands, it does appear that

the RCMST problem with unit demands is significantly easier to solve than

the general RCST problem.

One final point should be made. It is possible to "trick" the

computer program into the more traditional branch-and-bound approach that

bounds a subproblem (PA) by solving only the relaxation (PO0 ), that is,

the MST problem that results from ignoring the resource constraints. Thus,

the traditional approach and the Lagrangean-based approach can be compared

with the same program on the computer. Computational experience indicates

that a traditional branch-and-bound approach to the RMST and RCKST problems

fails due to a lack of sufficient computer memory; because of the frequent

branching of the traditional approach, the size of the list of unfathomed

subproblems grows so rapidly that available computer memory is rapidly

exceeded. This is illustrated by the example at the end of Section 3 where

the branch-and-bound algorithm based on Lagrangean relaxation resulted in a

bib-tree with only 18 nodes as compared to one with over 400 nodes

resulting from the traditional approach.

-41-



REFERENCES

[11 Bradley, G. H., Survey of Deterministic Networks, AZIE Trans. 7

(1975), 222-234.

[21 Camerini, P. M., L. Fratta, and F. Mafftoli, On Improving Relaxation

Methods by Modified Gradient Techniques, Math. Prog. Study

(1975), 26-34.

[3] Chandy, K. M., and T. Lo, The Capacitated Minimum Spanning Tree,

Networks 3 (1973), 173-181.

[41 Cheriton, D., and R. E. Tarjan, Finding Minimum Spanning Trees, SIAM

J. Comput. 5 (1976), 724-742.

[5) Crowder, H. P., Computational Improvements for Subgradient

Optimization, Symposia Mathematics 19 (1976), 357-372.

[6) Dijkstra, E. W., A Note on Two Problems in Connection with Graphs,

Numerishe Mathematik 1 (1959), 269-271.

(71 Duke, C. M., and D. F. Moran, Earthquakes and City Lifelines, San

Fernando Earthquake of February 9, 1971 and Public Pollcy, a

report to the Special Subcommittee of the Joint Committee on

Seismic Safety - California Legislature (1971).

[8) Edmonds, J., Matroids and the Greedy Algorithm, Math. Prog. 1 (1971),

127-136.

[9) Wisher, M. L., The Lagrangian Relaxation Method for Solving Integer

Programming Problems, Man. Sci. 27 (1981), 1-18.

[101 __ , . D. Northup, and J. F. Shapiro, Using Duality to Solve

Discrete Optimization Problems: Theory and Computational

Experience, Math. Pros. Study 3 (1975), 56-94.

-42-



1111 Gavish, B., Formulations and Algorithms for the Capacitated Minimal

Directed Tree Problem, Working Paper No. 8016, Graduate School of

Management, University of Rochester, Rochester, N.Y. (1980).

[121 _ , Topological Design of Centralized Computer Networks -

Formulations and Algirithus, Working Paper No. 8009, Graduate

School of Management, University of Rochester, Rochester, N.Y.

(1981).

[13] Geoffrion, A. M., Lagrangean Relaxation for Integer Programming,

Math. Prog. Study 2 (1974), 82-114.

[14] Held, M., and R. M. Karp, The Traveling Salesman Problem and Minimum

Spanning Trees, Opns. Res. 18 (1970), 1138-1162.

[15] and _ , The Traveling Salesman Problem and Minimum

Spanning Trees: Part II, Math. Prog. .1 (1971), 6-25.

[16] _ , P. Wolfe, and H. P. Crowder, Validation of Subgradient

Optimization, Math. Prog. 6 (1974), 62-88.

[17] Hillier, F. S., and G. J. Lieberman, Introduction to Operations

Research, Holden-Day, Inc., San Francisco (1980).

[18] Kershenbaum, A., Computing Capacitated Minimal Spanning Trees

Efficiently, Networks 4 (1974), 299-310.

[19] and R. Van Slyke, Computing Minimum Spanning Trees

Efficiently, Proc. 25th Ann. Conf. of the ACM (1972), 518-527.

[20] Kruskal, J. B., On the Shortest Spanning Subtree of a Graph and the

Traveling Salesman Problem, Proc. Amer. Math Soc. 7 (1956), 48-50.

(211 Prim, R. C., Shortest connection Networks and Some Generalizations,

Bell Systems Tech. J. 36 (1957), 1389-1401.

-43-



(221 Rothfarb, B., H. Frank, D. M. Rosenbaum, and K. Steiglitz, Optimal

Design of Offshore Natural-Gas Pipeline Systems, Opns. Res. 18

(1970), 992-1020.

[23] Shapiro, J. F., A survey of Lagrangian Techniques for Discrete

Optimization, Ann. Discrete Math. 5 (1979), 113-138.

[241 Yao, A. C., An 0(131 log iog lVi) Algorithm for Finding Minimum

Spanning Trees, Information Processing Letters, 4 (1975), 21-23.

-44-



Table I

Memory Requirements for Computer Program

Approximate Memory Maximum Value ofS
NRequirement (Kilobyte.) Assuming Availability

of 7000 Kilobytes of Memory

10 5 1.9 + 0.110S 63,619

20 5 7.4 + 0.188S 37,194

30 5 16.5 + 0.278S 25,120

40 5 29.3 + 0.382S 18,247

50 5 45.6 + 0.497S 13,992

10 5 1.9 + 0.110S 63,619

20 10 11.2 + 0.228S 30,652

30 15 33.9 + 0.3588 19,458

40 20 76.1 + 0-502S 13,792

50 25 143.6 + 0.657S 10,435

10 10 2.8 + 0.1508 46,648

20 20 18.8 + 0.308S 22,666

30 30 60.0 + 0.4788 14,518

40 40 138.5 + 0.6628 10,364

50 s0 266.1 + 0.8578 7,857
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